La tecnología OLED marcó el mundo de la telefonía móvil en 2017. Por una parte, por llegar al terminal de gama alta más vendido, el iPhone. Por otra, por debilitar con un fuerte tono azulado con variaciones ínfimas de ángulos a un smartphone tan bueno globalmente como ha sido el Google Pixel 2 XL, como vimos en su análisis.
Su evolución merece ser repasada en profundidad, pues hace no tanto parecía ser miembro del grupo de tecnologías que prometían mucho, pero no acababan de cumplir. El despliegue técnico de Samsung en smartphones y de LG en televisores ha hecho posible su implementación a marchas forzadas, hasta brindar hoy en día algunas de las mejores pantallas del mercado.
Junto a ello, veremos retos de la tecnología OLED para mejorar, que pese a que se pueda pensar que ya ha alcanzado la perfección, tiene mucho margen de mejora en lo que se refiere a lidiar con problemas conocidos como la retención de imagen, pero sobre todo donde su mejor aliado, el negro, es protagonista.
Por último, veremos qué depara el futuro a la tecnología de diodos orgánicos, si es que no es sucedida pronto por una tecnología superior.
Breve historia del OLED en smartphones
Tras investigar con la tecnología OLED desde los años 90, Sony anunció el comienzo de la producción comercial de paneles OLED para móviles en primavera de 2004. Ante lo reducido de las cantidades, la compañía sólo destinó los paneles a productos propios. El primero smartphone en integrar esta tecnología fue una PDA, la Sony Clié VZ90 en septiembre de ese mismo año, aunque nunca salió de Japón.
A partir de ese momento, fue Nokia quien estrenó la tecnología AMOLED en el Nokia N85. El terminal se beneficiaba de la novedosa tecnología de pantalla para ahorrar energía con su tema predominantemente negro. Además, Nokia implementó algo que ahora está muy de moda, pero que en la época era una función desconocida: una especie de modo “Always On” que mostraba la hora en blanco sobre fondo negro puro cuando el terminal entraba en modo de espera.
Pero, ¿qué aportaban los paneles AMOLED? Dentro del OLED, existe la matriz pasiva y la matriz activa (Active Matrix Organic Light Emitting Diode). La primera se usa en reproductores de música con pantalla pequeña, wearables o pantallas de información de automóvil: soluciones sencillas, pues la pantalla es controlada con el encendido de sus filas y columnas. Las AMOLED cuentan con controladores distintos, y como sabemos cada píxel es gestionado de forma independiente. Además, en ellas existe una matriz TFT que controla qué píxeles deben encenderse, lo que ayuda a ahorrar mucha energía, pues en matriz pasiva esa acción se realiza con circuitos externos.
Uno de los aspectos que retrasó mucho la llegada de la tecnología OLED al público fue la necesidad de invertir grandes cantidades en investigación y fábricas
Gracias a una producción creciente desde 2002, por su parte Samsung alcanzó 30 millones de paneles fabricados en 2005, hecho que junto a la apertura de más plantas le permitió llegar las estanterías de terminales propios y no propios desde 2009, donde destacaron el primer Galaxy y los Omnia. En 2010 también vimos tecnología AMOLED en los Nexus One y en los HTC Desire, aunque solo temporalmente, pues Samsung comenzó a tener problemas suministrando paneles, algo que sólo el tiempo ha solucionado con más ampliaciones de fábricas y un incremento notable de la producción. La baja disponibilidad de pantallas OLED (que genera un mayor precio) sigue siendo algo con lo que los fabricantes continúan luchando.
Todo ello no fue más que la antesala de los terminales que comenzaron la popularización masiva de la tecnología OLED bajo una marca propia: SuperAMOLED y la familia, la formada por los Samsung Galaxy S. Sin embargo, el primer terminal en montar los nuevos paneles fue, por meses (de abril a junio), el Samsung Wave.
Es con el Galaxy S original cuando vemos por primera vez, de forma masiva, unos colores con una intensidad nunca antes presente en un teléfono móvil (y prácticamente en ninguna pantalla comercial). Tuvo la mala suerte de coincidir con la calibración más realista, el brillo muy superior y la nitidez disparatada de la pantalla Retina del iPhone 4.
El buen hacer en nitidez y calibración de las pantallas LCD a partir de 2010 restó brillantez a los enormes logros de las primeras AMOLED
En cualquier caso, comenzaba un amplio debate que duraría hasta nuestros días, con muchos usuarios prefiriendo la saturación extrema en los colores frente a la, primero moderación, y luego precisión de color de pantalla. Los números podían estar más o menos acercados a la realidad, pero entraban por los ojos ante unas LCD que pese a ser más maduras, tenían más difícil llenar el espectro de color deseado, sRGB.
Así, no es hasta finales de 2013, con el Samsung Galaxy Note 3, cuando por fin podemos hablar de pantallas que además de ser efectivas y vistosas en interiores, también lo son en exteriores, estrenando el modo boost de brillo en ambientes de alta luminosidad. Fue un paso muy relevante, pues además competir en representación de color y eficiencia, la gran guerra entre OLED e IPS se encontraba en la búsqueda de la máxima luminosidad, que en aquella época lideraba claramente la segunda.
Para esto sirven los nits: comparativa de pantallas de móviles a pleno sol de verano
Displaymate, web de referencia en análisis de pantallas (aunque no mide los problemas que luego veremos en profundidad), es una buena fuente para ver cómo ha crecido el brillo en las SuperAMOLED de los Galaxy S. La primera cifra corresponde al brillo máximo en una pantalla blanca al 100%, y entre paréntesis, al modo de brillo máximo con brillo automático en ambientes muy luminosos:
Y por fin, justo un año después, DisplayMate habla de “pantalla indistinguible de perfecta en precisión de reproducción de color” en el Samsung Galaxy Note 4, siempre que se seleccionara el “modo Básico” en los ajustes de pantalla. El Note de 2014, estrenaba, además un panel QHD que eliminó con una enorme densidad los problemas de nitidez del su patrón de subpíxeles PenTile. A diferencia del patrón clásico RGB, donde cada píxel contiene un subpíxel rojo, verde y azul, en los paneles PenTile existe un número inferior de subpíxeles, en concreto, un tercio menos.
En lugar de contar con el mismo número de subpíxeles de todos los colores, existe el doble de verdes que de azules y rojos, y con diferentes tamaños de subpíxel. Esto se debe a que el subpíxel verde es el más duradero y eficiente, mientras que el rojo y particularmente el azul tienden a morir antes. Visualmente, la sensación que produce esta disposición en pantallas con poca densidad es de poca definición, algo causado por el espacio negro que deja el menor número de los subpíxeles. La explicación de uso detrás del PenTile, teóricamente inferior a RGB, se encuentra en la la búsqueda de la máxima longevidad, pues la degradación es mucho mayor a las pantallas LCD.
Samsung comenzó a ser muy aclamada en análisis como los de esta casa, Consultores-TIC, y en muchos sentidos, la envidia de la industria, salvando a, Apple y a, quizá, HTC. Pese a esa superioridad, la compañía surcoreana no frenó el ritmo innovador e impresionó técnicamente con la curva en el Note Edge y las curvas en el Samsung Galaxy S6 Edge.
El presente de la tecnología OLED: brillo con mucho camino por recorrer
Como hemos dicho, es a partir de 2014 cuando referentes como DisplayMate comienzan a hablar de pantalla perfecta en cuanto a colores y saturación. Claramente era una exageración, porque Samsung ha seguido trayendo grandes mejoras perceptibles en prácticamente cada generación. El ritmo vertiginoso que los surcoreanos han impreso desde 2010 ha hecho pensar que estábamos ante una tecnología ya madura, siendo realmente adolescente.
Es algo más evidente cuando se sale de Samsung y viramos hacia paneles fabricados por LG, con el caso ya citado del Google Pixel 2 XL. Hablamos sólo de smartphones, pues en paneles de televisores (con mayor dificultad de producción) y wearables (fabricando el del Apple Watch) han demostrado estar a un gran nivel.
El debate entre OLED y LCD siempre ha sido tremendamente subjetivo y una cuestión de gustos
Sin embargo, incluso volviendo a Samsung y a sus implementaciones en terminales propios, hay realidades que pueden llevar a pensar que sólo hemos superado una primera etapa de la tecnología OLED/SuperAMOLED donde se han alcanzado los objetivos prioritarios, para pasar ahora a solucionar problemas quizá no tan relevantes usuarios que no son tan expertos.
En ese sentido, hay que recordar el debate del que veníamos, y cómo se valoraban las ventajas y desventajas: la saturación desbocada y el balance de blancos disparado hacia tonos fríos. Lo que los expertos de la industria consideraban defectos desagradables que con el tiempo se podrían controlar, para el público suponía una razón más de la que presumir.
Black crush, o la falta de detalle en zonas oscuras cercanas al negro
Generalmente, cuando se habla de tecnología OLED, se alaba cómo estos paneles reproducen el negro, o más bien cómo no lo reproducen, pues al ser autoemisiva lo que se hace es apagar los píxeles. En ello difieren de de las pantallas LCD IPS, que dependen de una fuente de iluminación que, en el mejor de los casos, puede mostrar solo un negro cercano al puro gracias al apagado por zonas o local dimming.
Sin embargo, se habla poco de que el negro también puede ser peor enemigo de cualquier pantalla OLED, por motivos incluso no resueltos en los Samsung Galaxy S y en televisores de gama alta.
El modo oscuro es el secreto peor guardado de la industria a la hora de mejorar la autonomía de nuestros móviles (y portátiles)
Reproducir la escala de grises no es nada sencillo para estas pantallas, pues a medida que los colores se acercan al negro, tienden a perderse en él y a “quemarse”, en lo que conocemos como “black crush” o “black clipping“. Al igual que en las luces altas la sobreexposición hace perder todo el detalle de una zona, en imágenes oscuras o con zonas oscuras puede ocurrir lo mismo cuando ciertos tonos que no son totalmente negros se reproducen como tal.
Esto puede no parecer importante pero mientras se reproducen contenidos en ambientes oscuros, en teoría el escenario ideal para OLED, donde se puede lucir frente al poco contraste y nivel de negros de las LCD, la sensación puede ser de no percibir mucho detalle que sí se ve en las segundas, aunque sea un poco lavado. Otro problema del black crush es que a menudo está acompañado de artefactos y banding que pueden ser muy visibles al cambiar los píxeles de negro a otro color.
Todo esto, más que un asunto inherente al OLED parece una cuestión de calibración. Profundizando, según comentan en Anandtech, un medio dedicado a análisis técnicos y cuyos editores tienen una gran experiencia en la industria, también tienen responsabilidad los controladores DDIC y uso el de PWM o modulación por ancho de pulsos.
El “black crush” no es un asunto que se suela tocar en la mayoría de análisis en medios y canales de YouTube, pero aquellos más técnicos, como el ya mencionado Anandtech, o el canal de Erica Griffin, sí profundizan con frecuencia en la problemática. Erica suele mostrar cómo cada terminal que analiza representa la escala de grises con una tabla con números negros y un color debajo. En una pantalla perfectamente calibrada, serían perceptibles todos los números, excepto el 0, cuyo fondo el negro puro. Cuantos menos se vean, desde el 21, con fondo gris, peor es en ese sentido. Veamos algunos ejemplos.
El primero corresponde de su análisis del Pixel 3XL, donde compara el asunto con el iPhone XS, que junto a sus hermanos con OLED está considerada la mejor pantalla en este sentido. Sin ser perfecto, el terminal de Apple permite discriminar mucha más tonalidad.
En segundo lugar, vemos los resultados obtenidos por Erica en el análisis del Huawei P20 Pro, donde el terminal chino obtiene resultados mucho mejores a los del Samsung Galaxy S9+, considerado por muchos el terminal con mejor pantalla del mercado, junto al Samsung Galaxy Note 9, cuya imagen del análisis vemos después.
Leave a Comment